Unsupervised Ranking of Numerical Observations based on Magnetic Properties and Correlation Coefficient

AbstractThis paper addresses a novel unsupervised algorithm to rank numerical observations which is important in many applications in computer science, especially in information retrieval (IR). The proposed algorithm shows how correlation coefficients between attribute values and the concept of magnetic properties can be explored to rank multi-attribute numerical objects. One of the main reasons of using correlation coefficients between attribute values and the concept of magnetic properties is that they are easy to compute and interpret. Our proposed Unsupervised Ranking using Magnetic properties and Correlation coefficient (URMC) algorithm can use some or all the numerical attributes of objects and can also handle objects with missing attribute values. The proposed algorithm overcomes a major limitation of the state-of-the-art technique while achieving excellent results.


Return to previous page